Dynamic
Proxies
|n Java

Design Patternsn Java Bob Tarr

Design Patterns In Java

Dynamic Proxies

Proxy objects are useful in many situations to act as an
intermediary between a client object and a target object

Usually, the proxy classis already available as Java bytecodes,
having been compiled from the Java source file for the proxy
class

When needed, the bytecodes for the proxy class are loaded into
the Java Virtual Machine and proxy objects can then be
instantiated

But, in some circumstances, it is useful to dynamically generate
the bytecodes for the proxy class at runtime

This module will look at the techniques for dynamically
generating proxies in Java and the benefits of doing so

Dynamic ProxiesIn Java
2

Bob Tarr




Vehicle Example With No Proxy

e First, let's show aclient interacting with a target object directly

e Suppose we have an 1Vehicle interface as follows:

/**

* Interface | Vehicle.

*/

public interface |Vehicle {
public void start();
public void stop();
public void forward();
public void reverse();
public String getName();

Dynamic ProxiesIn Java

Design Patterns In Java Bob Tarr
3
Vehicle Example With No Proxy (Continued)
e Here'saCar class that implements the IV ehicle interface:
/**
* Class Car
*/
public class Car inplenents |Vehicle {
private String name;
public Car(String name) {this.name = nane;}
public void start() {
Systemout.printin("Car " + name + " started");
}
Il stop(), forward(), reverse() inplenmented simlarly.
/1 getName() not shown.
}
Design Patterns In Java Dynamic ProxiesIn Java Bob Tarr

4




Vehicle Example With No Proxy (Continued)

/**

* Class Cientl.

* Interacts with a Car Vehicle directly.
*/

public class Cientl {

public static void main(String[] args) {

I Vehicle v = new Car("Botar");

v.start();

v.forward();

v.stop();

}
}
start() B Car
forward() )
Client »(| Vehi cl e)

stop() 3

Dynamic ProxiesIn Java

Design Patterns In Java 5

Vehicle Example With No Proxy (Continued)

e Output for the vehicle example with no proxy:

Car Botar started
Car Botar going forward
Car Botar stopped

Dynamic ProxiesIn Java

Design Patterns In Java 6




Vehicle Example With Proxy

o Now let's have the client interact with the target object through a
proxy
¢ Remember that the main intent of a proxy isto control access to
the target object, rather than to enhance the functionality of the
target object
e Waysthat proxies can provide access control include:
= Synchronization
= Authentication
= Remote Access
= Lazy instantiation

Dynamic Proxies In Java Bob Tarr

Design Patterns In Java 7

Vehicle Example With Proxy (Continued)

e Here'sour VehicleProxy class:
/**
* Cl ass Vehicl eProxy.
*/
public class VehicleProxy inplenments |Vehicle {
private | Vehicle v;

public Vehicl eProxy(lVehicle v) {this.v = v;}

public void start() {
System out . println("VehicleProxy: Begin of start()");
v.start();
System out. println("VehicleProxy: End of start()");
}
Il stop(), forward(), reverse() inplenented simlarly.
/1 getName() not shown.

}

Design Patterns In Java Dynam'C ProxiesIn Java Bob Tarr

8




Vehicle Example With Proxy (Continued)

* Class Client2.

* Interacts with a Car Vehicle through a Vehicl eProxy.

public class Cient2 {

public static void main(String[] args) {
I Vehicle ¢ = new Car("Botar");
I Vehicle v = new Vehi cl eProxy(c);
v.start();
v.forward();

v-stop(); Pr oxy

forward()

. forward()
C i ent

Dynamic ProxiesIn Java

Car
| Vehi cl e)

10

Design Patternsin Java 9 Bob Tarr
Vehicle Example With Proxy (Continued)
o Output for the vehicle example with a proxy:
Vehi cl eProxy: Begin of start()
Car Botar started
Vehi cl eProxy: End of start()
Vehi cl eProxy: Begin of forward()
Car Botar going forward
Vehi cl eProxy: End of forward()
Vehi cl eProxy: Begin of stop()
Car Botar stopped
Vehi cl eProxy: End of stop(
Design Patterns In Java Dynamic ProxiesIn Java Bob Tarr




Design Patterns In Java

Dynamic Proxies In Java

Java 1.3 supports the creation of dynamic proxy classes and
instances

A dynamic proxy classisaclass that implements alist of
interfaces specified at runtime when the class is created

A proxy interfaceis an interface that isimplemented by a proxy
class

A proxy instance is an instance of a proxy class

Each proxy instance has an associated invocation handler object,
which implements the interface I nvocationHandler

A method invocation on a proxy instance through one of its proxy
interfaces will be dispatched to the invoke() method of the
instance's invocation handler

Dynamic ProxiesIn Java
11

Bob Tarr

Design Patterns In Java

Dynamic Proxy Class

Proxy classes are created using the new java.lang.reflect.Proxy
class

Proxy classes are public, final, non-abstract subclasses of
javalang.reflect.Proxy

The unqualified name of a proxy classis unspecified. The space
of class names that begin with the string "$Proxy" should be,
however, reserved for proxy classes.

A proxy class implements exactly the interfaces specified at its
creation

Since aproxy classimplements all of the interfaces specified at
its creation, invoking getlnterfaces() on its Class object will return
an array containing the same list of interfaces (in the order
specified at its creation)

Dynamic ProxiesIn Java
12

Bob Tarr




Dynamic Proxy Class

e Each proxy class has one public constructor that takes one
argument, an implementation of the interface InvocationHandler,
to set the invocation handler for a proxy instance

¢ Rather than having to use the reflection API to access the public
constructor, a proxy instance can be aso be created by calling the
Proxy.newlnstance() method, which combines the actions of
calling Proxy.getProxyClass() with invoking the constructor with
an invocation handler

Dynamic ProxiesIn Java
13

Design Patterns In Java Bob Tarr

Thejava.lang.reflect.Proxy Class

e public static Class getProxyClass(ClassL oader |oader,
Clasqd[] interfaces)
throws Illegal ArgumentException

= Creates a proxy class defined in the specified class loader and which
implements the specified interfaces. Returnsthe java.lang.Class object for
the generated proxy class.

e protected Proxy(InvocationHandler ih)
= Constructs a new Proxy instance from a subclass (typically, a dynamic
proxy class) with the specified value for itsinvocation handler
¢ public static boolean isProxyClass(Class c)

= Returnstrue if and only if the specified class was dynamically generated to
be a proxy class using the getProxyClass() method or the
newProxylnstance() method of the Proxy class

Dynamic ProxiesIn Java
14

Design Patterns In Java Bob Tarr




Thejava.lang.reflect.Proxy Class

e public static Object newProxylnstance(ClassL oader loader,
Clasq]] interfaces,
InvocationHandler ih)
throws Illegal ArgumentException

= Creates a proxy class defined in the specified class loader and which
implements the specified interfaces. In addition, creates an instance of the
proxy by invoking the one public proxy constructor which sets the
associated invocation handler to the specified handler. Returns areference
to the proxy instance.

= Proxy. newPr oxyl nstance(cl, interfaces, ih);
isequivalent to
Pr oxy. get Proxyd ass(cl,
i nterfaces).get Constructor(new C ass[] {
I nvocat i onHandl er. cl ass }).new nstance(new
oj ect[] {ih});

Dynamic ProxiesIn Java

Design Patterns In Java
15

Bob Tarr

Thejava.lang.reflect.Proxy Class

e public static InvocationHandler getlnvocationHandler
(Object proxy)
throws Illegal ArgumentException
= Returns the invocation handler for the specified proxy instance

Dynamic ProxiesIn Java

Design Patterns In Java
16

Bob Tarr




Thejava.lang.reflect.InvocationHandler Interface

e Each proxy instance has an associated invocation handler. When a
method is invoked on a proxy instance, the method invocation is
encoded and dispatched to the invoke() method of its invocation
handler

e public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable

= Processes a method invocation on a proxy instance and returns the result.
The proxy parameter isthe proxy instance that the method was invoked on.
The method parameter is the Method instance corresponding to the
interface method invoked on the proxy instance. The args parameter isan
array of objects containing the values of the arguments passed in the
method invocation on the proxy instance, or null if the interface method
takes no arguments.

Dynamic ProxiesIn Java
17

Design Patterns In Java Bob Tarr

Vehicle Example With Dynamic Proxy

e To do our vehicle example with a dynamic proxy, we first need
an invocation handler:

import java.lang.reflect.*;
/**
* Class Vehicl eHandl er.
*/
public class Vehicl eHandl er inplements |InvocationHandl er {
private | Vehicle v;

publ i c Vehicl eHandl er(1Vehicle v) {this.v = v;}

public Object invoke(Object proxy, Method m Object[] args)
throws Throwabl e {
System out. println("Vehicle Handler: Invoking " +
m get Nare()) ;
return minvoke(v, args);

}

Desigh Patterns n Java Dynamic ProxiesIn Java

18

Bob Tarr




Vehicle Example With Dynamic Proxy (Continued)

¢ Notice how we use the Reflection API to invoke the proper
method on our target object:

m i nvoke(v, args);

I nvocati on

Pr oxy Handl er

start() Car
aient forward() invoke() "invokeg'( | Vehi cl e)
stop()

Dynamic ProxiesIn Java

Design Patterns In Java Bob Tarr
19
Vehicle Example With Dynamic Proxy (Continued)
import java.lang.reflect.*;
/**
* Class Cient3.
* Interacts with a Car Vehicle through a dynamically
* generated Vehicl eProxy.
*/
public class Cient3 {
public static void main(String[] args) {
I Vehicle ¢ = new Car("Botar");
Cl assLoader cl = |Vehicle.class.getC assLoader ();
I Vehicle v = (IVehicle) Proxy.newProxyl nstance(cl,
new Cl ass[] {I Vehicle.class}, new VehicleHandler(c));
v.start();
v.forward();
v.stop();
}
}
Dynamic ProxiesIn Java Bob Tarr

Design Patterns In Java
20

10



Vehicle Example With Dynamic Proxy (Continued)

o Output for the vehicle example with a dynamic proxy:

Vehi cl e Handl er: Invoking start
Car Botar started

Vehi cl e Handl er: | nvoking forward
Car Botar going forward

Vehi cl e Handl er: I nvoking stop
Car Botar stopped

Design Patterns|n Java Dynamic Prztimesln Java

Bob Tarr

Uses For Dynamic Proxies

¢ IntheVehicle example, there seemsto be little benefit in
dynamically generating the proxy:
= Wesltill had to write the invocation handler class!
= Thereis now another object layer between the client and the target!
e S0 where would we use dynamic proxies??
= Generic Delegation
= Dynamic generation of proxies (stubs) for remote objects

Design Patterns|n Java Dynamic Przgmesln Java

Bob Tarr

11



L ogged Vehicle Example

e Toillustrate the idea of Generic Delegation, let's add alogging
capability to our Vehicle Example

e Suppose that we want to log each action (start, stop, etc.) that we
perform on a Car, but we do not want to modify the existing Car
code

e Soundslike ajob for the Decorator Pattern!

o WEell write aLoggedV ehicle class that implements the I Vehicle
interface, logs each requested action and then delegates the actual
action to a contained 1V ehicle object

e The essence of the Decorator Pattern is delegation through
composition!

Dynamic ProxiesIn Java
23

Design Patterns In Java Bob Tarr

L ogged Vehicle Example (Continued)

e Here'sthe LoggedVehicle class:
/**
* (Cl ass LoggedVehi cl e.
*/
public class LoggedVehicle inplenments |Vehicle {
private | Vehicle v;

public LoggedVehicle(lVehicle v) {this.v = v;}

public void start() {
Systemout.printin("Log Entry: Vehicle " + v.getNanme() +
" started");
v.start();
}
Il stop(), forward(), reverse() inplenented simlarly.
/1 getName() not shown.

}

Dynamic ProxiesIn Java
24

Design Patterns In Java Bob Tarr

12



L ogged Vehicle Example (Continued)

/**

* Class Client4.

* Interacts with a Car Vehicle through a Loggi ng Decorator.

*/
public class Cient4 {
public static void main(String[] args) {
I Vehicle ¢ = new Car("Botar");
I Vehicle v = new LoggedVehi cl e(c);

v.start();
v.forward();
} v.stop(); LoggedVehicl e
}
_ forward() forward()
Client

Dynamic ProxiesIn Java
25

Design Patterns In Java

Car
| Vehi cl e)

Bob Tarr

L ogged Vehicle Example (Continued)

o Output for the vehicle example with alogging decorator:

Log Entry: Vehicle Botar started

Car Botar started

Log Entry: Vehicle Botar going forward
Car Botar going forward

Log Entry: Vehicle Botar stopped

Car Botar stopped

¢ Notice how similar this example isto the smple proxy example!
The difference between the Proxy Pattern and the Decorator
Pattern is one of intent: Proxy provides access control, while
Decorator adds functionality, in this case alogging capability.

Dynamic ProxiesIn Java

Design Patterns In Java
26

Bob Tarr

13



L ogged Vehicle Example (Continued)

¢ Whilethe LoggedV ehicle decorator class provides alogging
capability for any class that implements the 1V ehicle interface,
there are two drawbacks to this approach:

= |t wastediousto have to implement all of the methods of the IVehicle
interface in the LoggedV ehicle class

= Logging isageneric capability that we may want to add to other interfaces
in which case we have to write another wrapper class
¢ Both of these drawbacks can be overcome by using dynamic
proxies
e Thedynamic proxy will automatically implement all of the
methods of the interface we specify, relieving us of the tedium of
doing this implementation ourselves

¢ And thereflective method invocation in our invocation handler
supports the desired generic delegation!

Dynamic ProxiesIn Java
27

Design Patterns In Java Bob Tarr

Generic Delegation Example

e Hereisagenericlogger class.
import java.lang.reflect.*;
/**
* Class GenericlLogger.
*/
public class GenericLogger inplenments |nvocationHandl er {
private Cbject target;

public GenericlLogger(CObject target) {this.target = target;}

public Object invoke(Object proxy, Method m Object[] args)
throws Throwabl e {

System out. println("CGeneric Logger Entry: Invoking " +
m get Nare()) ;
return minvoke(target, args);
}

Dynamic ProxiesIn Java
28

Design Patterns In Java Bob Tarr

14



Generic Delegation Example (Continued)

import java.lang.reflect.*;
/**
* Class Cientb5.
* Interacts with a Car Vehicle through a dynamically
* generated proxy and a Generic Logger.
*/
public class Cient5 {
public static void main(String[] args) {
I Vehicle ¢ = new Car("Botar");
Cl assLoader cl = |Vehicle.class.getC assLoader ();
I Vehicle v = (IVehicle) Proxy.newProxyl nstance(cl,
new Cl ass[] {I Vehicle.class}, new GenericlLogger(c));

v.start();
v.forward();
v.stop();
}
}
Design Patterns In Java Dynamic PI'Z%XieSIn Java Bob Tarr
Generic Delegation Example (Continued)
e Output for the vehicle example with a generic logger:
Generic Logger Entry: Invoking start
Car Botar started
Generic Logger Entry: Invoking forward
Car Botar going forward
Generic Logger Entry: Invoking stop
Car Botar stopped
Design Patterns In Java Dynamic ProxiesIn Java Bob Tarr

30

15



Generic Delegation Example (Continued)

e Thegreat thing about this generic logger isthat it can be used to

add alogging capability to any interface!
e Consider an interface for shapes:

/**

* Interface | Shape.

*/

public interface | Shape {
public void draw();
public void print();
public void nmove();
public void resize();

Dynamic ProxiesIn Java

Design Patterns In Java Bob Tarr
31
Generic Delegation Example (Continued)
import java.lang.reflect.*;
/**
* Class Cienté6.
* Interacts with a Rectangle Shape through a dynanically
* generated proxy and a Generic Logger.
*/
public class Cient6 {
public static void main(String[] args) {
| Shape rect = new Rectangle();
Cl assLoader cl = | Shape. cl ass. get O assLoader () ;
| Shape s = (| Shape) Proxy.newProxylnstance(cl,
new Cl ass[] {I Shape. cl ass}, new GenericlLogger(rect));
s.draw();
s. nove();
s.resize();
}
}
Design Patterns In Java Dynamic ProxiesIn Java Bob Tarr

32

16



Generic Delegation Example (Continued)

o Output for the shape example with a generic logger:

Generic Logger Entry: Invoking draw
Rect angl e drawn

Generic Logger Entry: Invoking nmove
Rect angl e noved

Generic Logger Entry: Invoking resize
Rect angl e resi zed

Design Patterns In Java Dynam'C PI’3(;XIeS InJava Bob Tarr

17



